Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

WebChucK IDE: A Web-Based Programming Sandbox for ChucK

Terry Feng Celeste Betancur Michael R. Mulshine
CCRMA, Stanford University CCRMA, Stanford University CCRMA, Stanford University
tzfenglccrma.stanford.edu celestelccrma.stanford.edu mulshine@ccrma.stanford.edu

Chris Chafe Ge Wang
CCRMA, Stanford University CCRMA, Stanford University
cc@ccrma.stanford.edu ge@ccrma.stanford.edu

ABSTRACT =
WebChucK IDE is a web-based integrated develop- — iecesw’ Cmifoimicos.., 1 e
ment environment for writing and running ChucK code.
WebChucK IDE provides tools and workflows for de-
veloping and running ChucK on-the-fly and in any web
browser, on desktop and mobile devices. This environ-
ment integrates ChucK development with visualization
and code-based generative web Ul elements to offer an
accessible and playful way to program computer music.
In this paper, we detail the design and implementation of
WebChucK IDE and discuss its various affordances and

Loaded autos: K (2/8/2023, 4:22:57

Loaded file: high_bongo.
Loaded file: low_bongo.
MebChuc 1

pad’
[chuck]OW): removing shred: 1 (compiled.code). .
"pad” : (strin
wave: 132300.000000 308700000000
mave: 132300.000000 308700000000

limitations as a sandbox for learning, experimentation, Figure 1. WebChucK IDE running a beach-themed ChucK
and art making. musical composition.
Try WebChucK IDE:
https://chuck.stanford.edu/ide/ * Access the vast majority of ChucK functionality
* Add, replace, and remove shreds (concurrent pro-
1. INTRODUCTION cesses)
Advancements in the Web Audio API have enabled com- « Monitor the VM, currently running shreds, and pro-
puter music synthesis languages to run with near-native gram output
performance on web browsers. Recently, ChucK [1]—a
strongly-timed computer music language—was compiled * Access ChucK’s library of example code

to WebAssembly from its C/C++ source code with em—) o
scripten! and hosted in JavaScript through the Web WebChucK IDE combines the on-the-fty workflow of mini-

Audio API, making it possible to embed the ChucK run- Audicle with the trappings of the web, such as streamlined
time system (compiler, virtual machine, synthesis engine) access to the underlying audio system (i.e. no need to
on a browser web page. Subsequently, a slew of creative worty abouF Sf':lectmg the correct gudw device). Expapded
web-based audio projects using WebChucK were devel- by its proximity to UI/UX libraries of the web, entirely
oped, ranging from games to artwork, to tools. new ChucK development tools have been developed and
One such tool, WebChucK IDE, provides a web-based integrated into the WebChucK IDE sandbox:

programming sandbox for ChucK. Users familiar with . . L .

ChucK will find that the WebChucK IDE provides many * A frequency and time-domain audio visualizer

of the same features and functionalities as ChucK’s long-

. e * An auto-generative user interface
standing desktop utility, miniAudicle [2]. These include

the ability to: * Vim text-editing support
e Start the ChucK virtual machine (VM) « Options for Light and Dark mode
1 .
https://emscripten.org/
P P g Many of the benefits of WebChucK IDE follow from
the inherent accessibility of the web. WebChucK IDE
Copyright: © 2023 Terry Feng et al. This is an open-access article distributed expands access to audio programming to anyone with a
under the terms of the Creative Commons Attribution 3.0 Unported License, which desktop Computer or mobile device and an internet con-
permits unrestricted use, distribution, and reproduction in any medium, provided nection. It offers a compe]ling alternative to the desktop
the original author and source are credited. programming workflow for ChucK, avoiding the need to

79

mailto:tzfeng@ccrma.stanford.edu
mailto:celeste@ccmra.stanford.edu
mailto:mulshine@ccrma.stanford.edu
mailto:cc@ccrma.stanford.edu
mailto:cc@ccrma.stanford.edu
https://chuck.stanford.edu/ide/
https://emscripten.org/
http://creativecommons.org/licenses/by/3.0/

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

download software and deal with file systems, audio in-
terfaces, and other operating system overhead. To use
WebChucK IDE, users can simply navigate to any web
page hosting the IDE 2, start WebChucK (much like “’start-
ing the virtual machine” in miniAudicle), and begin writ-
ing and running ChucK code. Near ubiquitous access and
a streamlined workflow make WebChucK IDE an attrac-
tive tool for use in education and research contexts. Fur-
thermore, it serves as a playful sandbox for creative proto-
typing. In this vein, adopting the run-time and on-the-fly
programming paradigms of its predecessor, miniAudicle,
WebChucK IDE exposes a mode of immersive real-time
audio coding on the web typically associated with live cod-
ing environments, transforming any browser into a poten-
tial musical instrument.

1.1 A Brief History of ChucK Tooling

2023 marks the 20th anniversary of the release of ChucK.
The strongly-timed computer music language has been
used in audio synthesis, musical instrument design, lap-
top orchestra, mobile music apps, and many other artistic,
educational, and research contexts. Its notable features in-
clude:

e A sample-precise unified timing mechanism for
multi-rate event and control processing

* A powerful concurrent programming model rooted
in time, allowing for audio programs to be expressed
precisely and in parallel

e A live coding environment (and way of think-
ing) that supports rapid experimentation, teach-
ing/learning, and performance.

ChucK was designed with the idea that the form of a tool
shapes the way we think [3]. ChucK exists in various forms
including command-line chuck, miniAudicle (a graphi-
cal IDE; [4]), ChiP (ChucK on the iPhone), FaucK (Faust
in ChucK; [5]), Chunity (ChucK in Unity; [6]), and most
recently, WebChucK [7] and ChAI (ChucK for Al in early
development).

The first integrated ChucK development environment was
the Audicle, in use and in development between 2004-
2006 [8]. The Audicle featured an exclusively 3D au-
diovisual interface and was designed to be a fun and ex-
pressive way to write ChucK code on-the-fly while visu-
alizing ChucK’s inner workings as it compiled and exe-
cuted the code. Created in C++ and OpenGL, The Audi-
cle aimed to aid development and, potentially, to serve as
an audiovisual live-coding performance tool. Through its
various “faces,” the Audicle provided visualizers for gen-
erated audio, timing, concurrency, shreds in the VM, and
served as a live coding editor, and as a platform for build-
ing bespoke interfaces for three Princeton Laptop Orches-
tra works (“Non-Specific Gamelan Taiko Fusion”, “On the
Floor”, and “ChucK ChucK Rocket”) [3,9]. While Audi-
cle’s video-game-esque audiovisual workflow was a rad-
ical experiment in IDE design, its implementation com-
plexity (creating visual elements from the ground up in

2 for example: https://chuck.stanford.edu/ide/

80

OpenGL) made it difficult to maintain and slow to develop
new features. A simpler and more conventional ChucK
IDE emerged in the form of miniAudicle [2], developed
by Spencer Salazar in 2006. To this day, miniAudicle
serves as the primary integrated development environment
for audio programming in ChucK, running on Windows,
MacOS, and Linux.

Various concerted efforts led to the creation of
WebChucK IDE, including the following:

» Jack Atherton refactored and compiled the ChucK

C/C++ source to WebAssembly to run on the web in
2020

* Mike Mulshine made tutorials for embedding
WebChucK in a web page® and created audiovisual
experiments, and demos 4 in 2021

e Chris Chafe taught CCRMA’s introductory com-
puter music course using WebChucK (before the
IDE existed) in 20223

» Terry Feng prototyped and developed the interface
and architecture of WebChucK IDE in 2022-2023

¢ Celeste Betancur joined the effort and experimented
with code-based auto-generative GUI and graphics
shaders in 2023

2. RELATED WORK

Over the years, lightweight desktop IDEs (like DrJava®)
have been created to gently introduce new users to pro-
gramming languages and workflows, providing interfaces
for new programmers to quickly evaluate and experiment
with code. Various online code editors have emerged to
bring coding and educational tools to the masses across
platforms. These include Online—Python7 , Ideone 8, and
the p5.js Editor, which provide streamlined workflows to
experiment, prototype, test, and learn, removing the tech-
nical overhead of installing and working with platform-
dependent tooling. WebChucK IDE adds to this list, syn-
thesizing the computer music features of ChucK with a fun
and accessible interface.

WebChucK IDE is not alone as other computer mu-
sic languages have introduced online editors. FAUST (a
functional audio signal processing language) [10] has its
own web IDE [11, 12] with code-based auto-generated Ul
tools for quick musical interface prototyping and DSP re-
search ® . Csound provides an online IDE featuring Csound
script editing and a logging console, as well as a commu-
nity forum for sharing Csound programs [13]. Addition-
ally, efforts to port SuperCollider to the web have been ex-
plored, but no unified effort has persisted to bring it to the
web in its full form, nor as an IDE.

3https://chuck.stanford.edu/webchuck/tutorial/
4https://mikemulshine.com/webchuck-demo
Shttps://ccrma.stanford.edu/courses/220a/
Snttp://www.drjava.org/
Thttps://online-python.com
8https://ideone.com/
https://faustide.grame.fr/

https://chuck.stanford.edu/ide/
https://chuck.stanford.edu/webchuck/tutorial/
https://mikemulshine.com/webchuck-demo
https://ccrma.stanford.edu/courses/220a/
http://www.drjava.org/
https://online-python.com
https://ideone.com/
https://faustide.grame.fr/

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

Though not computer music languages, various audio li-
braries exist on the web, wrapping, abstracting, and ex-
tending the functionality of the Web Audio API. The pop-
ular JavaScript library p5.js ' provides a limited set of au-
dio functions (in p5.sound) to control the playback of au-
dio files and perform basic sound synthesis. Paired with its
online editor, p5.js provides a workflow for building audio-
visual projects. Similarly, gibber [14] extends the Web Au-
dio API and provides an interactive and fun live-coding in-
terface with audio data visualization inline with JavaScript
code.

3. DESIGN AND IMPLEMENTATION

WebChucK IDE offers an integrated development envi-
ronment and graphical user interface for programming in
ChucK. As a programming sandbox, WebChucK IDE con-
tains a code editor, file explorer, output console, and vir-
tual machine monitor. The workflows enabled by these
elements are familiar to ChucK users, mirroring elements
in the native IDE for ChucK, miniAudicle. Beyond these
“standard” features, WebChucK IDE introduces an audio
waveform and spectrum analyzer, as well as the ability to
dynamically generate a controllable graphical user inter-
face from ChucK code.

uuuuuu

Figure 2. WebChucK IDE has 4 main sections. The
WebChucK bar (in orange) lies across the top. Beneath that
from left to right is the file explorer, code editor, and vir-
tual machine monitor + output console (top and bottom).

The layout of WebChucK IDE is broken down into 4 sec-
tions (see Figure 2) The WebChucK bar across the top al-
lows the user to start the ChucK Virtual Machine (VM)
and synthesis engine. Once the machine is running, four
buttons are enabled, enabling the ability to grant micro-
phone access, compile a ChucK program and add it as a
shred to the ChucK VM for immediate execution, replace
the currently running shred, or remove the current shred.
The buttons are designed to be click- and touch-friendly,
accommodating usage across different platforms.

The code editor is powered by Ace'! and incorporates
basic editor features like ChucK syntax highlighting and
Vim keyboard shortcuts. Users can write ChucK code here
or browse for code examples to load into the editor. This

Ohttps://p5js.org/
Whttps://ace.c9.io0/

81

makes it easy for users to build rapid prototypes or experi-
ment with existing code from ChucK’s extensive example
library. To compile this code and run it in ChucK’s vir-
tual machine, the user navigates to the WebChucK bar and
clicks the green “Compile and Add.” This manner of run-
ning ChucK programs maintains miniAudicle’s on-the-fly
run-time nature, allowing for multiple programs to be mon-
itored as they run concurrently. The editor’s contents are
auto-saved to the user’s local browser cache to allow for
continued development across browsing sessions.

Users can upload files to WebChucK IDE’s virtual file
system using the file explorer. Files are kept client-side,
allowing users to upload and edit ChucK code directly
in the browser. The virtual file system processes auxil-
iary audio and plain-text files uploaded through JavaScript
into WebChuck’s WebAssembly module instance for file-
related APIs and unit generators to interface with the data.
ChucK code can additionally be exported as a . ck file to
be run in native ChucK or the miniAudicle.

The rightmost main section of the WebChucK IDE is
comprised of two components: a virtual machine monitor
(top), and an output console (bottom). The virtual machine
monitor features a shred table, populated whenever a shred
is created and running in ChucK’s virtual machine. Each
row of the table displays a unique shred identification num-
ber, filename, current running time, and a button to remove
the program associated with the entry. This table shows all
of the currently running programs. The output console di-
rectly beneath the shred table captures stderr/stdout
from ChucK. This displays print and log messages directly
in the IDE. If the output console is not needed, it can be
swapped with the audio visualizer or auto-generated GUI.

WebChucK IDE is built with HTML and JavaScript
components as well as the Spectre.css'?> framework.
The IDE runs on top of the WebChucK API, in
the form of webchuck.wasm, webchuck.js, and
webchuck_host.js. The latter instantiates ChucK’s
runtime system as an AudioWorkletNode [15] within
Web Audio, where the WebChucK WASM module acts as
the node’s AudioWorkletProcessor to process au-
dio samples. The entire system runs on a browser client;
no backend server is needed. This means that not only
is it easy to start using WebChucK IDE from any mod-
ern browser, but it is also straightforward to deploy stan-
dalone and modified WebChucK IDEs (e.g. hosting a cus-
tom WebChucK IDE for use in a classroom setting).

3.1 Audio Visualizer

The Audio Visualizer (see Figure 3) in WebChucK IDE is a
real-time visualization of the audio currently being gener-
ated by ChucK and displays a time-domain waveform and
a short-time Fourier analysis spectrum. This reactive visu-
alization can be helpful in debugging audio synthesis and
additionally serves as a teaching tool that generates visual
feedback of real-time audio.

The implementation of the audio visualizer takes advan-
tage of the vast array of JavaScript tools and features.

2nttps://picturepan2.github.io/spectre/

https://p5js.org/
https://ace.c9.io/
https://picturepan2.github.io/spectre/

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

Figure 3. WebChucK IDE’s audio visualizer pictured in the
bottom right.

WebChucK’s AudioWorkletNode provides direct ac-
cess to the output audio generated by ChucK. The audio
is analyzed and animated in JavaScript using Web Audio’s
built-in audio analyzer (AnalyserNode) and rendered to
an HTML Canvas element. The visualizer lives as an exter-
nal module in the same AudioContext as WebChucK,
thereby visualizing audio without disrupting the process-
ing and flow of sound.

3.2 Auto-generated GUI

T global Event Kick;
2 global Event snare;
3 global Event hihat;
4 global Event ride;
5
6
7
8

) => global float gain;
0.5 => global float freq;

OO0

9 0 => global int octave;
10 100 => global int midi;

12 /* additional ChucK code here */

Figure 4. WebChucK IDE’s auto-generated GUI processes
global events, floats, and ints for user interaction

WebChucK IDE’s auto-generated GUI implementation
scans the current ChucK code to create an interactive GUI
consisting of sliders and buttons that correspond one-to-
one with the user’s declared global ChucK variables (see
Figure 4). Once generated, the GUI can be immedi-
ately used to manipulate corresponding ChucK variables.
Presently, each global int is associated with a horizontal
slider, each global £1oat with a vertical slider, and each
ChucK Event type with a button. By default, floating
point values are normalized between 0 and 1, while inte-
gers are normalized from O to 127. Manipulating a GUI el-
ement will perform the appropriate action (e.g., update an
integer, update a floating point value, or trigger an Event).

The method and semantics for creating the graphical user
interface introduce a new philosophy from the native mini-
Audicle User Interface (MAUI), the GUI interface API
for miniAudicle on MacOS [4]. Unlike MAUI, which
presented an API for explicitly arranging and architect-
ing the GUI, WebChucK IDE’s approach is automatic and
requires no explicit code. While MAUI is capability lies

82

in sophisticated but intentional graphical user interface de-
sign, WebChucK IDE’s auto-generated GUI elements pro-
vide immediately usable buttons and sliders, reducing code
overhead to encourage experimentation with mapping dif-
ferent parameters. The automatic GUI generator performs
text-preprocessing and is built using a p5.js canvas.

4. EVALUATION

While WebChucK has been used as a module embed-
ded in web pages since 2020, and in a popular intro-
ductory computer music course at Stanford University in
2022, WebChucK IDE is very much in its infancy. Even
so, its potential has become apparent, as programmers
(novice and experienced) have quickly adopted the tool to
learn ChuckK, test its limits, and make music on the web.
WebChucK IDE has performed well in preliminary tests,
in which we ran a number of complex and computation-
ally demanding ChucK programs without any modifica-
tions from their original desktop versions. Compared to
desktops, WebChucK’s performance varied between half
to full efficiency (running in 32-bit WebAssembly), com-
pared to the native command line version (64-bit). These
tests included:

¢ An interactive multi-voice feature-based concatena-
tive audio mosaic tool

e Computationally expensive physical models

(Banded Waveguides)

¢ Audio-modulated WebGL shaders

We acknowledge it will take time, more testing, and more
general usage to gain a clearer picture of both the perfor-
mance and the overall usability of the system.

Seasoned ChucK users have remarked on the flexibility
and portability of WebChucK IDE. Being able to not only
run but also code ChucK programs on a mobile phone in-
side a browser transforms the world of ChucK develop-
ment into a sandbox for experimentation. Ease of access
and use has implications for communities far beyond the
circle of ChucK power users. For example, students who
primarily use portable devices in coursework will be able
to work with ChucK on their phones or tablets, whereas
previously, they would have needed a laptop.

5. FUTURE WORK

A team of active developers aims to bring WebChucK IDE
to feature parity with miniAudicle. Additional efforts are
underway to integrate tools like the Web MIDI API, li-
braries such as osc.js, and WebGL. These will supplement
existing native ChucK implementations, making the IDE
more than just a development environment but an expres-
sive interface. While modular components like Chugins
(dynamic ChucK libraries) introduce additional function-
ality and classes on top of the native ChucK language, they
aren’t yet available in WebChucK. Initial progress favor-
ably suggests that WebChucK IDE will be an integral tool
for ChucK development in general.

Proceedings of the Sound and Music Computing Conference 2023, Stockholm, Sweden

Of the many future extensions of WebChucK IDE envi-
sioned, these are on the top of our list:

¢ A streamlined ChucK code-sharing system

* An “export” feature: save your project to run else-
where or export it as a standalone WebChucK web-

page
* Realtime collaborative online code-editing in
WebChucK (akin to Google Docs or Overleaf)

» Code-inlined graphics for audio and event visualiza-
tion (akin to gibber '3)

* Ability to write WebChuck, p5.js, shaders, and web
pages side-by-side and render within WebChucK
IDE

* A collection of live coding or performance interfaces
(e.g. featuring full-screen graphics for audio visual-
ization and a streamlined overlaid editor)

e Connect other Web Audio libraries or Web Audio
implementations of audio programming languages
like Faust [11] together

Much of the future work on WebChucK IDE harkens
back to the aims of the original Audicle: to create a playful
and immersive run-time coding environment—a sandbox
in which to code, learn, and play.

Acknowledgments

The authors would like to thank Jack Atherton for bringing
WebChucK to life in its earliest form, from modifying and
compiling the ChucK source to WebAssembly to develop-
ing usage examples and basic IDE-like functionality. Spe-
cial thanks also to Hongchan Choi and others on the Web
Audio API team for implementing the AudioWorklet
interface, enabling the low-level audio control required for
programming languages like ChucK to run in conjunction
with other Web Audio tools on the web.

6. REFERENCES

[1] G. Wang, P. R. Cook, and S. Salazar, “Chuck: A
strongly timed computer music language,” Computer
Music Journal, vol. 39, no. 4, pp. 10-29, 2015.

[2] S. Salazar, G. Wang, and P. Cook, “miniaudicle and

chuck shell: New interfaces for chuck development

and performance,” 01 2006.

G. Wang, Artful Design: Technology in Search of the
Sublime. Stanford University Press, 2018.

[4] S. Salazar, G. Wang, and P. R. Cook, “miniaudicle and
chuck shell: New interfaces for chuck development
and performance.” in International Computer Music
Conference, 2006.

Bhttps://gibber.cc/

83

(5]

(6]

(7]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

G. Wang and R. Michon, “Fauck!! hybridizing the
faust and chuck audio programming languages.” in
Sound and Music Computing, 2016.

J. Atherton and G. Wang, “Chunity: Integrated audio-
visual programming in unity,” in New Interfaces for
Musical Expression. Virginia Tech, Jun. 2018, pp.
102-107.

M. Mulshine, G. Wang, J. Atherton, C. Chafe, T. Feng,
and C. Betancur, “Webchuck: Computer music pro-
gramming on the web,” in New Interfaces for Musical
Expression, 2023.

G. Wang and P. R. Cook, “The audicle: A
context-sensitive, on-the-fly audio programming env-
iron/mentality,” in International Conference on Math-
ematics and Computing, 2004.

G. Wang, “Some Principles of Visual Design for Com-
puter Music,” Leonardo Music Journal, vol. 26, pp.
14-19, 2016.

Y. Orlarey, D. Fober, and S. Letz, “FAUST :
an Efficient Functional Approach to DSP Program-
ming,” in NEW COMPUTATIONAL PARADIGMS
FOR COMPUTER MUSIC, E. D. FRANCE,
Ed., 2009, pp. 65-96. [Online]. Available:
https://hal.science/hal-02159014

S. Letz, Y. Orlarey, and D. Fober, “Faust domain spe-
cific audio dsp language compiled to webassembly,”
Companion Proceedings of the The Web Conference
2018, 2018.

R. Michon and Y. Orlarey, “The faust online compiler:
a web-based ide for the faust programming language,”
2012.

E. C. Steven Yi, Hlover Sigursson, “Csound web-ide,”
Proceedings of the International Web Audio Confer-
ence, pp. 92-97, 2019.

C. Roberts and J. Kuchera-Morin, “Gibber: Live cod-
ing audio in the browser,” in International Computer
Music Conference, 2012.

H. Choi, “Audio worklet: The future of web audio,”
in International Conference on Music and Computing,
2018.

https://gibber.cc/
https://hal.science/hal-02159014

	Binder3.pdf
	SMC2023_cover_page

	SMC2023_proceedings.pdf
	preface.pdf
	toc.pdf
	pc.pdf
	paper_199
	paper_417
	paper_568
	paper_631
	paper_815
	paper_986
	paper_1119
	paper_1314
	paper_1411
	paper_1454
	paper_1717
	paper_1956
	paper_2102
	paper_2164
	paper_2465
	paper_2722
	paper_2881
	paper_2999
	paper_3407
	paper_3854
	paper_4133
	paper_4386
	paper_4772
	paper_5030
	paper_5060
	paper_5179
	paper_5282
	paper_5331
	paper_5469
	paper_5588
	paper_5641
	paper_5662
	paper_5727
	paper_5923
	paper_6100
	paper_6312
	paper_6752
	paper_6896
	paper_7179
	paper_7290
	paper_7327
	paper_7416
	paper_7440
	paper_7462
	paper_7494
	1. INTRODUCTION
	Overview and Conceptualisation

	2. Theoretical framework: Auralisation
	2.1 Geometry-Based Auralisation
	2.2 Perception-Based Auralisation

	3. research questions and methodology
	4. experiment procedure
	4.1 The Two Experiment Versions Explained – Differences in Music Spatialisation
	4.2 Spatial Music Static Auralisation
	4.3 Spatial Music Object-Based Auralisation
	4.4 Adaptive Music Auralisation in the Second Experiment Version
	4.5 Hybrid of Auralisation Techniques

	5. Results of the qualitative inquiry
	6. Discussion
	7. conclusions
	8. REFERENCES

	paper_7681
	paper_7850
	paper_8079
	paper_8112
	paper_8117
	paper_8127
	paper_8412
	paper_8636
	paper_8654
	paper_9431
	paper_9594
	paper_9600
	paper_9619
	paper_9832
	paper_9850
	paper_9932
	keyword_index.pdf
	author_index.pdf

